

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Advanced Usage

Client Instances

Using a Client instance to make requests will give you HTTP connection pooling,
will provide cookie persistence, and allows you to apply configuration across
all outgoing requests.

>>> client = http3.Client()
>>> r = client.get('https://example.org/')
>>> r
<Response [200 OK]>

Calling into Python Web Apps

You can configure an http3 client to call directly into a Python web
application, using either the WSGI or ASGI protocol.

This is particularly useful for two main use-cases:

	Using http3 as a client, inside test cases.

	Mocking out external services, during tests or in dev/staging environments.

Here’s an example of integrating against a Flask application:

from flask import Flask
import http3

app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

client = http3.Client(app=app)
r = client.get('http://example/')
assert r.status_code == 200
assert r.text == "Hello World!"

Developer Interface

Main Interface

	get(url, [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	options(url, [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	head(url, [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	post(url, [data], [json], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	put(url, [data], [json], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	patch(url, [data], [json], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	delete(url, [data], [json], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	request(method, url, [data], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

Client

An HTTP client, with connection pooling, redirects, cookie persistence, etc.

>>> client = http3.Client()
>>> response = client.get('https://example.org')

	def __init__([auth], [cookies], [verify], [cert], [timeout], [pool_limits], [max_redirects], [app], [dispatch])

	def .get(url, [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	def .options(url, [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	def .head(url, [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	def .post(url, [data], [json], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	def .put(url, [data], [json], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	def .patch(url, [data], [json], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	def .delete(url, [data], [json], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	def .request(method, url, [data], [params], [headers], [cookies], [auth], [stream], [allow_redirects], [verify], [cert], [timeout])

	def .send(request, [stream], [allow_redirects], [verify], [cert], [timeout])

	def .close()

Response

An HTTP response.

	def __init__(...)

	.status_code - int

	.reason_phrase - str

	.protocol - "HTTP/2" or "HTTP/1.1"

	.url - URL

	.headers - Headers

	.content - bytes

	.text - str

	.encoding - str

	.is_redirect - bool

	.request - Request

	.cookies - Cookies

	.history - List[Response]

	def .raise_for_status() - None

	def .json() - Any

	def .read() - bytes

	def .stream() - bytes iterator

	def .raw() - bytes iterator

	def .close() - None

	def .next() - Response

Request

An HTTP request. Can be constructed explicitly for more control over exactly
what gets sent over the wire.

>>> request = http3.Request("GET", "https://example.org", headers={'host': 'example.org'})
>>> response = client.send(request)

	def __init__(method, url, [params], [data], [json], [headers], [cookies])

	.method - str

	.url - URL

	.content - byte or byte async iterator

	.headers - Headers

	.cookies - Cookies

URL

A normalized, IDNA supporting URL.

>>> url = URL("https://example.org/")
>>> url.host
'example.org'

	def __init__(url, allow_relative=False, params=None)

	.scheme - str

	.authority - str

	.host - str

	.port - int

	.path - str

	.query - str

	.full_path - str

	.fragment - str

	.is_ssl - bool

	.origin - Origin

	.is_absolute_url - bool

	.is_relative_url - bool

	def .copy_with([scheme], [authority], [path], [query], [fragment]) - URL

	def .resolve_with(url) - URL

Origin

A normalized, IDNA supporting set of scheme/host/port info.

>>> Origin('https://example.org') == Origin('HTTPS://EXAMPLE.ORG:443')
True

	def __init__(url)

	.is_ssl - bool

	.host - str

	.port - int

Headers

A case-insensitive multi-dict.

>>> headers = Headers({'Content-Type': 'application/json'})
>>> headers['content-type']
'application/json'

	def __init__(self, headers)

Cookies

A dict-like cookie store.

>>> cookies = Cookies()
>>> cookies.set("name", "value", domain="example.org")

	def __init__(cookies: [dict, Cookies, CookieJar])

	.jar - CookieJar

	def extract_cookies(response)

	def set_cookie_header(request)

	def set(name, value, [domain], [path])

	def get(name, [domain], [path])

	def delete(name, [domain], [path])

	def clear([domain], [path])

	Standard mutable mapping interface

Async Client

HTTP3 offers a standard synchronous API by default, but also gives you
the option of an async client if you need it.

Async is a concurrency model that is far more efficient than multi-threading,
and can provide significant performance benefits and enable the use of
long-lived network connections such as WebSockets.

If you’re working with an async web framework then you’ll also want to use an
async client for sending outgoing HTTP requests.

Making Async requests

To make asynchronous requests, you’ll need an AsyncClient.

>>> client = http3.AsyncClient()
>>> r = await client.get('https://www.example.com/')

API Differences

If you’re using streaming responses then there are a few bits of API that
use async methods:

>>> client = http3.AsyncClient()
>>> r = await client.get('https://www.example.com/', stream=True)
>>> try:
>>> async for chunk in r.stream():
>>> ...
>>> finally:
>>> await r.close()

The async response methods are:

	.read()

	.stream()

	.raw()

	.close()

If you’re making parallel requests, then you’ll also need to use an async API:

>>> client = http3.AsyncClient()
>>> async with client.parallel() as parallel:
>>> pending_one = parallel.get('https://example.com/1')
>>> pending_two = parallel.get('https://example.com/2')
>>> response_one = await pending_one.get_response()
>>> response_two = await pending_two.get_response()

The async parallel methods are:

	.parallel() Used as an “async with” context manager.

	.get_response()

	.next_response()

Requests Compatibility Guide

HTTP3 aims to be compatible with the requests API wherever possible.

This documentation outlines places where the API differs…

QuickStart

Pretty much all the API mentioned in the requests QuickStart should be identical
to the API in our own documentation. The following exceptions apply:

	Response.url - Returns a URL instance, rather than a string. Use str(response.url) if you need a string instance.

	http3.codes - In our documentation we prefer the uppercased versions, such as codes.NOT_FOUND,
but also provide lower-cased versions for API compatibility with requests.

	stream=True. - Streaming responses provide the .stream() and .raw() byte iterator interfaces, rather than the .iter_content() method and the .raw socket interface.

Advanced Usage

!!! warning
TODO

Parallel Requests

!!! warning
This page documents some proposed functionality that is not yet released.
See pull request #52 [https://github.com/encode/http3/pull/52] for the
first-pass of an implementation.

HTTP3 allows you to make HTTP requests in parallel in a highly efficient way,
using async under the hood, while still presenting a standard threaded interface.

This has the huge benefit of allowing you to efficiently make parallel HTTP
requests without having to switch out to using async all the way through.

Making Parallel Requests

Let’s make two outgoing HTTP requests in parallel:

>>> with http3.parallel() as parallel:
>>> pending_one = parallel.get('https://example.com/1')
>>> pending_two = parallel.get('https://example.com/2')
>>> response_one = pending_one.get_response()
>>> response_two = pending_two.get_response()

If we’re making lots of outgoing requests, we might not want to deal with the
responses sequentially, but rather deal with each response that comes back
as soon as it’s available:

>>> with http3.parallel() as parallel:
>>> for counter in range(1, 10):
>>> parallel.get(f'https://example.com/{counter}')
>>> while parallel.has_pending_responses:
>>> r = parallel.next_response()

Exceptions and Cancellations

The style of using parallel blocks ensures that you’ll always have well
defined exception and cancellation behaviours. Request exceptions are only ever
raised when calling either get_response or next_response, and any pending
requests are cancelled on exiting the block.

Parallel requests with a Client

You can also call parallel() from a client instance, which allows you to
control the authentication or dispatch behaviour for all requests within the
block.

>>> client = http3.Client()
>>> with client.parallel() as parallel:
>>> ...

Async parallel requests

If you’re working within an async framework, then you’ll want to use a fully
async API for making requests.

>>> client = http3.AsyncClient()
>>> async with client.parallel() as parallel:
>>> pending_one = await parallel.get('https://example.com/1')
>>> pending_two = await parallel.get('https://example.com/2')
>>> response_one = await pending_one.get_response()
>>> response_two = await pending_two.get_response()

See the Async Client documentation for more details.

QuickStart

!!! note
This page closely follows the layout of the requests QuickStart documentation.
The http3 library is designed to be API compatible with requests wherever
possible.

First start by importing HTTP3:

>>> import http3

Now, let’s try to get a webpage.

>>> r = http3.get('https://httpbin.org/get')
>>> r
<Response [200 OK]>

Similarly, to make an HTTP POST request:

>>> r = http3.post('https://httpbin.org/post', data={'key': 'value'})

The PUT, DELETE, HEAD, and OPTIONS requests all follow the same style:

>>> r = http3.put('https://httpbin.org/put', data={'key': 'value'})
>>> r = http3.delete('https://httpbin.org/delete')
>>> r = http3.head('https://httpbin.org/get')
>>> r = http3.options('https://httpbin.org/get')

Passing Parameters in URLs

To include URL query parameters in the request, use the params keyword:

>>> params = {'key1': 'value1', 'key2': 'value2'}
>>> r = http3.get('https://httpbin.org/get', params=params)

To see how the values get encoding into the URL string, we can inspect the
resulting URL that was used to make the request:

>>> r.url
URL('https://httpbin.org/get?key2=value2&key1=value1')

You can also pass a list of items as a value:

>>> params = {'key1': 'value1', 'key2': ['value2', 'value3']}
>>> r = http3.get('https://httpbin.org/get', params=params)
>>> r.url
URL('https://httpbin.org/get?key1=value1&key2=value2&key2=value3')

Response Content

HTTP3 will automatically handle decoding the response content into unicode text.

>>> r = http3.get('https://www.example.org/')
>>> r.text
'<!doctype html>\n<html>\n<head>\n<title>Example Domain</title>...'

You can inspect what encoding has been used to decode the response.

>>> r.encoding
'UTF-8'

If you need to override the standard behavior and explicitly set the encoding to
use, then you can do that too.

>>> r.encoding = 'ISO-8859-1'

Binary Response Content

The response content can also be accessed as bytes, for non-text responses:

>>> r.content
b'<!doctype html>\n<html>\n<head>\n<title>Example Domain</title>...'

Any gzip and deflate HTTP response encodings will automatically
be decoded for you. If brotlipy is installed, then the brotli response
encoding will also be supported.

For example, to create an image from binary data returned by a request, you can use the following code:

>>> from PIL import Image
>>> from io import BytesIO
>>> i = Image.open(BytesIO(r.content))

JSON Response Content

Often Web API responses will be encoded as JSON.

>>> r = http3.get('https://api.github.com/events')
>>> r.json()
[{u'repository': {u'open_issues': 0, u'url': 'https://github.com/...' ... }}]

Custom Headers

To include additional headers in the outgoing request, use the headers keyword argument:

>>> url = 'http://httpbin.org/headers'
>>> headers = {'user-agent': 'my-app/0.0.1'}
>>> r = http3.get(url, headers=headers)

Sending Form Encoded Data

Some types of HTTP requests, such as POST and PUT requests, can include data
in the request body. One common way of including that is as form encoded data,
which is used for HTML forms.

>>> data = {'key1': 'value1', 'key2': 'value2'}
>>> r = http3.post("https://httpbin.org/post", data=data)
>>> print(r.text)
{
 ...
 "form": {
 "key2": "value2",
 "key1": "value1"
 },
 ...
}

Form encoded data can also include multiple values form a given key.

>>> data = {'key1': ['value1', 'value2']}
>>> r = http3.post("https://httpbin.org/post", data=data)
>>> print(r.text)
{
 ...
 "form": {
 "key1": [
 "value1",
 "value2"
]
 },
 ...
}

Sending Multipart File Uploads

You can also upload files, using HTTP multipart encoding:

>>> files = {'upload-file': open('report.xls', 'rb')}
>>> r = http3.post("https://httpbin.org/post", files=files)
>>> print(r.text)
{
 ...
 "files": {
 "upload-file": "<... binary content ...>"
 },
 ...
}

You can also explicitly set the filename and content type, by using a tuple
of items for the file value:

>>> files = {'upload-file': ('report.xls', open('report.xls', 'rb'), 'application/vnd.ms-excel')}
>>> r = http3.post("https://httpbin.org/post", files=files)
>>> print(r.text)
{
 ...
 "files": {
 "upload-file": "<... binary content ...>"
 },
 ...
}

Sending JSON Encoded Data

Form encoded data is okay if all you need is simple key-value data structure.
For more complicated data structures you’ll often want to use JSON encoding instead.

>>> data = {'integer': 123, 'boolean': True, 'list': ['a', 'b', 'c']}
>>> r = http3.post("https://httpbin.org/post", json=data)
>>> print(r.text)
{
 ...
 "json": {
 "boolean": true,
 "integer": 123,
 "list": [
 "a",
 "b",
 "c"
]
 },
 ...
}

Sending Binary Request Data

For other encodings you should use either a bytes type, or a generator
that yields bytes.

You’ll probably also want to set a custom Content-Type header when uploading
binary data.

Response Status Codes

We can inspect the HTTP status code of the response:

>>> r = http3.get('https://httpbin.org/get')
>>> r.status_code
200

HTTP3 also includes an easy shortcut for accessing status codes by their text phrase.

>>> r.status_code == http3.codes.OK
True

We can raise an exception for any Client or Server error responses (4xx or 5xx status codes):

>>> not_found = http3.get('https://httpbin.org/status/404')
>>> not_found.status_code
404
>>> not_found.raise_for_status()
Traceback (most recent call last):
 File "/Users/tomchristie/GitHub/encode/httpcore/http3/models.py", line 776, in raise_for_status
 raise HttpError(message)
http3.exceptions.HttpError: 404 Not Found

Any successful response codes will simply return None rather than raising an exception.

>>> r.raise_for_status()

Response Headers

The response headers are available as a dictionary-like interface.

>>> r.headers
Headers({
 'content-encoding': 'gzip',
 'transfer-encoding': 'chunked',
 'connection': 'close',
 'server': 'nginx/1.0.4',
 'x-runtime': '148ms',
 'etag': '"e1ca502697e5c9317743dc078f67693f"',
 'content-type': 'application/json'
})

The Headers data type is case-insensitive, so you can use any capitalization.

>>> r.headers['Content-Type']
'application/json'

>>> r.headers.get('content-type')
'application/json'

Multiple values for a single response header are represented as a single comma separated
value, as per RFC 7230 [https://tools.ietf.org/html/rfc7230#section-3.2]:

A recipient MAY combine multiple header fields with the same field name into one “field-name: field-value” pair, without changing the semantics of the message, by appending each subsequent field value to the combined field value in order, separated by a comma.

Cookies

Any cookies that are set on the response can be easily accessed:

>>> r = http3.get('http://httpbin.org/cookies/set?chocolate=chip', allow_redirects=False)
>>> r.cookies['chocolate']
'chip'

To include cookies in an outgoing request, use the cookies parameter:

>>> cookies = {"peanut": "butter"}
>>> r = http3.get('http://httpbin.org/cookies', cookies=cookies)
>>> r.json()
{'cookies': {'peanut': 'butter'}}

Cookies are returned in a Cookies instance, which is a dict-like data structure
with additional API for accessing cookies by their domain or path.

>>> cookies = http3.Cookies()
>>> cookies.set('cookie_on_domain', 'hello, there!', domain='httpbin.org')
>>> cookies.set('cookie_off_domain', 'nope.', domain='example.org')
>>> r = http3.get('http://httpbin.org/cookies', cookies=cookies)
>>> r.json()
{'cookies': {'cookie_on_domain': 'hello, there!'}}

Redirection and History

By default HTTP3 will follow redirects for anything except HEAD requests.

The history property of the response can be used to inspect any followed redirects.
It contains a list of all any redirect responses that were followed, in the order
in which they were made.

For example, GitHub redirects all HTTP requests to HTTPS.

>>> r = http3.get('http://github.com/')
>>> r.url
URL('https://github.com/')
>>> r.status_code
200
>>> r.history
[<Response [301 Moved Permanently]>]

You can modify the default redirection handling with the allow_redirects parameter:

>>> r = http3.get('http://github.com/', allow_redirects=False)
>>> r.status_code
301
>>> r.history
[]

If you’re making a HEAD request, you can use this to enable redirection:

>>> r = http3.head('http://github.com/', allow_redirects=True)
>>> r.url
'https://github.com/'
>>> r.history
[<Response [301 Moved Permanently]>]

Timeouts

HTTP3 defaults to including reasonable timeouts for all network operations,
meaning that if a connection is not properly established then it should always
raise an error rather than hanging indefinitely.

The default timeout for network inactivity is five seconds. You can modify the
value to be more or less strict:

>>> http3.get('https://github.com/', timeout=0.001)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

